ATTESTATION OF CONFORMITY

Issued to:

Ningbo Sunways Technologies Co., Ltd. No. 1, Second Road, Green Industrial Zone, Chongshou Town 315334 Cixi, Ningbo, Zhejiang, P.R. China

For the product:

Trade name:

<mark>sun</mark>ways

Grid-connected PV Inverter

STT-29.9KTL, STT-30KTL, STT-33KTL, STT-36KTL, Type/Model: STT-40KTL, STT-45KTL, STT-50KTL-M, STT-60KTL-M

Ratings: See Annex

Manufactured by:

Ningbo Sunways Technologies Co., Ltd. No. 1, Second Road, Green Industrial Zone, Chongshou Town 315334 Cixi, Ningbo, Zhejiang, P.R. China

Requirements:

Engineering Recommendation G99 Issue 1 - Amendment 9:2022 (G99/1-9)

This Attestation is granted on account of an examination by DEKRA, the results of which are laid down in a confidential file no. 6178948.50.

The examination has been carried out on one single specimen or several specimens of the product, submitted by the manufacturer. The Attestation does not include an assessment of the manufacturer's production. Conformity of his production with the specimen tested by DEKRA is not the responsibility of DEKRA.

Arnhem, 1 March 2024

Number: 6178948.01AOC

DEKRA Testing and Certification (Shanghai) Ltd.

Kreny Lin **Certification Manager**

© Integral publication of this attestation and adjoining reports is allowed

Page 1 of 17

DEKRA Testing and Certification (Shanghai) Ltd. 3F #250 Jiangchangsan Road Shibei Hi-Tech Park, 200436 Jing'an District, Shanghai, China T +86 21 6056 7666 F +86 21 6056 7555 www.dekra-product-safety.com

Kreny Lin

Ratings of the test product:

Operating temperature range: - 30°C to + 60°C Protective class: I Ingress protection rating: IP65 Power factor range (adjustable): 0.8 leading...0.8 lagging Overvoltage category: III(Mains), II(DC) Operating altitude: 3000m Inverter Topology: Transformerless

STT-29.9KTL:

PV input: Max 1100 Vdc, MPPT voltage range: 180-1000 Vdc, max. 4*26 A, Isc PV: 4*40 A AC output: 3/N/PE, 380 / 400 Vac, 50 / 60 Hz, rated power: 29.9 kW, rated apparent power: 29.9 kVA, max. apparent power: 29.9 kVA, rated current: 43.3 A, max. current: 43.3 A

STT-30KTL:

PV input: Max 1100 Vdc, MPPT voltage range: 180-1000 Vdc, max. 4*26 A, Isc PV: 4*40 A AC output: 3/N/PE, 380 / 400 Vac, 50 / 60 Hz, rated power: 30 kW, rated apparent power: 30 kVA, max. apparent power: 33 kVA, rated current: 43.5 A, max. current: 47.8 A

STT-33KTL:

PV input: Max 1100 Vdc, MPPT voltage range: 180-1000 Vdc, max. 4*26 A, Isc PV: 4*40 A AC output: 3/N/PE, 380 / 400 Vac, 50 / 60 Hz, rated power: 33 kW, rated apparent power: 33 kVA, max. apparent power: 36.3 kVA, rated current: 47.8 A, max. current: 52.6 A

STT-36KTL:

PV input: Max 1100 Vdc, MPPT voltage range: 180-1000 Vdc, max. 4*26 A, Isc PV: 4*40 A AC output: 3/N/PE, 380 / 400 Vac, 50 / 60 Hz, rated power: 36 kW, rated apparent power: 36 kVA, max. apparent power: 39.6 kVA, rated current: 52.2 A, max. current: 57.4 A

STT-40KTL:

PV input: Max 1100 Vdc, MPPT voltage range: 180-1000 Vdc, max. 4*26 A, Isc PV: 4*40 A AC output: 3/N/PE, 380 / 400 Vac, 50 / 60 Hz, rated power: 40 kW, rated apparent power: 40 kVA, max. apparent power: 44 kVA, rated current: 58 A, max. current: 63.8 A

STT-45KTL:

PV input: Max 1100 Vdc, MPPT voltage range: 180-1000 Vdc, max. 4*26 A, Isc PV: 4*40 A AC output: 3/N/PE, 380 / 400 Vac, 50 / 60 Hz, rated power: 45 kW, rated apparent power: 45 kVA, max. apparent power: 49.5 kVA, rated current: 65.2 A, max. current: 71.7 A

STT-50KTL-M:

PV input: Max 1100 Vdc, MPPT voltage range: 180-1000 Vdc, max. 4*26 A, Isc PV: 4*40 A AC output: 3/N/PE, 380 / 400 Vac, 50 / 60 Hz, rated power: 50 kW, rated apparent power: 50 kVA, max. apparent power: 55 kVA, rated current: 72.5 A, max. current: 79.7 A

STT-60KTL-M:

PV input: Max 1100 Vdc, MPPT voltage range: 180-1000 Vdc, max. 4*26 A, Isc PV: 4*40 A AC output: 3/N/PE, 380 / 400 Vac, 50 / 60 Hz, rated power: 60 kW, rated apparent power: 60 kVA, max. apparent power: 66 kVA, rated current: 87 A, max. current: 95.7 A

G99/1-9 A2-3 Compliance Verification Report –Tests for Type A Inverter Connected Power Generating Modules

Extract form test report number:

6178948.50

Model: S	T-60KTL-M				Р
Test 1:					
Measured	Voltage (V)	Measured Frequency (Hz)	Measured Power (W)	Measured Power factor	Test Time (seconds)
L1 L2 L3	195.96 195.97 195.93	47.00	59652.32	0.9995	20
Test 2:					
Measured Voltage (V)		Measured Frequency (Hz)	Measured Power (W)	Measured Power factor	Test Time (Minutes)
L1 L2 L3	195.77 195.76 195.77	47.50	60097.3	1.0000	90
Test 3:					
Measured Voltage (V)		Measured Frequency (Hz)	Measured Power (W)	Measured Power factor	Test Time (Minutes)
L1 L2 L3	252.71 252.74 252.74	51.50	60272.1	0.9998	90
Test 4:					
Measured	l Voltage (V)	Measured Frequency (Hz)	Measured Power (W)	Measured Power factor	Test Time (Minutes)
L1 L2 L3	252.71 252.71 252.71	52.00	59962.3	0.9997	15
Test 5:					
Measured	l Voltage (V)	Measured Frequency (Hz)	Measured Power (W)	Measured Power factor	Test Time (Minutes)
L1 L2 L3	230.56 230.31 230.35	50.00	59525.7	0.9987	90
Test 6:					
Measured	Voltage (V)	Ramp range	Test frequency ramp	Test Duration	Confirm no trip
1	95.5	47.0 Hz to 52.0 Hz	+1 Hzs ⁻¹	5.0 s	No trip
2	53.0	52.0 Hz to 49.0 Hz	-1 Hzs ⁻¹	3.0 s	No trip

Ρ

Document no. : 6178948.01AOC

2.	Power	Quality	– Har	monics:	
		quanty			

For **Power Generating Modules** of **Registered Capacity** of less than 75 A per phase (ie 50 kW) the test requirements are specified in Annex A.7.1.5. These tests should be carried out as specified in BS EN 61000-3-12, and measurements for the 2nd – 13th harmonics should be provided. The results need to comply with the limits of Table 2 of BS EN 61000-3-12 for single phase equipment and Table 3 of BS EN 61000-3-12 for three phase equipment. For three phase **Power Generating Modules**, measurements for all phases should be provided.

For **Power Generating Modules** of **Registered Capacity** of greater than 75 A per phase (ie 50 kW) the installation must be designed in accordance with EREC G5.

The rating of the **Power Generating Module** (per phase) should be provided below, and the Total Harmonic Distortion (THD) and Partial Weighted Harmonic Distortion (PWHD) should be provided at the bottom of this section.

Model: STT-60KTL-M

Power Generating Module tested to BS EN 61000-3-12

Power Generating Module tested to BS EN 61000-3-12										
Power Ge (rpp)	nerating Mo	odule rating	per phase	20 kVA Harmonic % = Measured Value 23/rating per pha (kVA)			% = ∕alue (A) x er phase			
Single or the single phase of the single phase	Three-phase inverter									
Hormonio	At 45-55%	of Register	ed Capacity	y				Limit in BS	EN 61000-	
Harmonic	Measured	Value (MV)	in Amps	Measured	Value	(MV)	in %	3-12		
	L1	L2	L3	L1	L	.2	L3	1 phase	3 phase	
2	0.1969	0.2825	0.1158	0.226	0.3	325	0.133	8%	8%	
3	0.0850	0.6082	0.5297	0.098	0.6	699	0.609	21.6%	Not stated	
4	0.2317	0.1797	0.3054	0.266	0.2	207	0.351	4%	4%	
5	1.3050	0.8944	1.3326	1.500	1.0)28	1.532	10.7%	10.7%	
6	0.0351	0.1169	0.1009	0.040	0.1	134	0.116	2.67%	2.67%	
7	0.7681	0.7763	0.5581	0.883	0.8	392	0.641	7.2%	7.2%	
8	0.3114	0.3722	0.3967	0.358	0.4	128	0.456	2%	2%	
9	0.2767	0.2970	0.1255	0.318	0.3	341	0.144	3.8%	Not stated	
10	0.3467	0.4419	0.4223	0.399	0.5	508	0.485	1.6%	1.6%	
11	0.1940	0.2706	0.3795	0.223	0.3	311	0.436	3.1%	3.1%	
12	0.0514	0.0881	0.0798	0.059	0.1	101	0.092	1.33%	1.33%	
13	0.1627	0.2717	0.1595	0.187	0.3	312	0.183	2%	2%	
THD	-	-	-	1.91	1.	81	1.99	23%	13%	
PWHD	-	-	-	4.66	4.	51	4.81	23%	22%	

THD = Total Harmonic Distortion

Hormonio	At 100% of	Registered	d Capacity				Limit in BS EN 61000-		
Harmonic	Measured	Value (MV)	in Amps	Measured	Value (MV)	in %	3-12		
	L1	L2	L3	L1	L2	L3	1 phase	3 phase	
2	0.259	0.036	0.255	0.298	0.041	0.293	8%	8%	
3	0.175	0.577	0.601	0.201	0.663	0.691	21.6%	Not stated	
4	0.493	0.640	0.690	0.567	0.736	0.793	4%	4%	
5	1.484	1.191	1.463	1.706	1.369	1.682	10.7%	10.7%	
6	0.078	0.142	0.146	0.090	0.163	0.168	2.67%	2.67%	
7	0.967	0.906	0.812	1.111	1.041	0.933	7.2%	7.2%	
8	0.242	0.314	0.334	0.278	0.361	0.384	2%	2%	
9	0.241	0.288	0.132	0.277	0.331	0.152	3.8%	Not stated	
10	0.516	0.606	0.586	0.593	0.697	0.674	1.6%	1.6%	
11	0.489	0.564	0.700	0.562	0.648	0.805	3.1%	3.1%	
12	0.049	0.108	0.087	0.056	0.124	0.100	1.33%	1.33%	
13	0.488	0.599	0.426	0.561	0.689	0.490	2%	2%	
THD	-	-	-	2.40	2.37	2.54	23%	13%	
PWHD	-	-	-	6.10	6.20	6.39	23%	22%	

THD = Total Harmonic Distortion

Model: STT-29.9KTL										
Power Ge	nerating Mo	odule tested	to BS EN 6	1000-3-12						
Power Ge (rpp)	per phase	10 kVA			kVA	Harmonic % = Measured Value (A) x 23/rating per phase (kVA)				
Single or the single phase L1 columns	Three-phase inverter									
Harmonic	At 45-55%	of Register	ed Capacity	y				Limit in BS	EN 61000-	
Tiannonic	Measured	Value (MV)	in Amps	Measured	Value (MV)	in %	3-12		
	L1	L2	L3	L1	L2		L3	1 phase	3 phase	
2	0.226	0.288	0.124	0.523	0.66	5	0.286	8%	8%	
3	0.097	0.604	0.505	0.223	1.39)5	1.166	21.6%	Not stated	
4	0.215	0.149	0.268	0.496	0.34	4	0.619	4%	4%	
5	1.175	0.784	1.246	2.714	1.81	1	2.878	10.7%	10.7%	
6	0.045	0.123	0.092	0.105	0.28	84	0.212	2.67%	2.67%	
7	0.619	0.655	0.403	1.430	1.51	3	0.931	7.2%	7.2%	
8	0.310	0.370	0.405	0.716	0.85	5	0.935	2%	2%	
9	0.244	0.286	0.142	0.564	0.66	51	0.328	3.8%	Not stated	
10	0.326	0.428	0.402	0.752	0.98	88	0.928	1.6%	1.6%	
11	0.092	0.198	0.231	0.212	0.45	57	0.533	3.1%	3.1%	
12	0.049	0.086	0.080	0.114	0.19	9	0.185	1.33%	1.33%	
13 0.054 0.152 0.108				0.125	0.35	51	0.249	2%	2%	
THD	-	-	-	3.39	3.2	7	3.64	23%	13%	
PWHD	-	-	-	8.15	8.00	0	8.63	23%	22%	

THD = Total Harmonic Distortion

Hormonio	At 100% of	Registered	d Capacity				Limit in BS EN 61000-		
Harmonic	Measured	Value (MV)	in Amps	Measured	Value (MV)	in %	3-12		
	L1	L2	L3	L1	L2	L3	1 phase	3 phase	
2	0.155	0.157	0.109	0.358	0.363	0.252	8%	8%	
3	0.186	0.602	0.583	0.430	1.390	1.346	21.6%	Not stated	
4	0.337	0.447	0.520	0.778	1.032	1.201	4%	4%	
5	1.449	1.110	1.428	3.346	2.564	3.298	10.7%	10.7%	
6	0.058	0.130	0.148	0.134	0.300	0.342	2.67%	2.67%	
7	0.943	0.889	0.788	2.178	2.053	1.820	7.2%	7.2%	
8	0.283	0.346	0.363	0.654	0.799	0.838	2%	2%	
9	0.259	0.298	0.126	0.598	0.688	0.291	3.8%	Not stated	
10	0.443	0.527	0.515	1.023	1.217	1.189	1.6%	1.6%	
11	0.430	0.489	0.639	0.993	1.129	1.476	3.1%	3.1%	
12	0.052	0.104	0.081	0.120	0.240	0.187	1.33%	1.33%	
13	0.436	0.538	0.361	1.007	1.242	0.834	2%	2%	
THD	-	-	-	4.55	4.41	4.77	23%	13%	
PWHD	-	-	-	11.57	11.50	11.98	23%	22%	

THD = Total Harmonic Distortion

3. Power Quality – Voltage fluctuations and Flicker:	Р
For Power Generating Modules of Registered Capacity of less than 75 A per phase (ie 50 kW tests should be undertaken in accordance with Annex A.7.1.4.3. Results should be normalised to standard source impedance, or if this results in figures above the limits set in BS EN 61000-3-11 suitable Maximum Impedance.) these a to a
For Power Generating Modules of Registered Capacity of greater than 75 A per phase (ie 50 installation must be designed in accordance with EREC P28. The standard test impedance is 0.4Ω for a single phase Power Generating Module (and for a truint in a three phase system) and 0.24Ω for a three phase Power Generating Module (and for phase unit in a split phase system). Please ensure that both test and standard impedance are constrained form. If the test impedance (or the measured impedance) is different to the standard impedance must be normalised to the standard impedance as follows (where the Power Factor of the generating output is 0.98 or above):	kW) the wo phase a two mpleted adance, it ration
d max normalised value = (Standard impedance / Measured impedance) x Measured value. Where the Power Factor of the output is under 0.98 then the X to R ratio of the test impedance s close to that of the standard impedance. The stopping test should be a trip from full load operation. The duration of these tests needs to comply with the particular requirements set out in the testing the technology under test.	should be g notes for

The test date and location must be declared.

Annex

Document no. : 6178948.01AOC

Test start dat	2	2024	1-02-04		Test end	Test end date			2024-02-04		
Test location		Ν	lo.9	9, Hongye	Road, Suz	hou Industr	rial Park	, Suzhou	i, Jiar	ngsu, P.R.	China
Model: STT-6	60KTL	-M									
			Starting			Stopping				Running	
d(m [º			K)	d(c) [%]	d(t) [%]	d(max) [%]	d(c) [%	6] d(t)	[%]	Pst [%]	Plt 2 hours [%]
Measured	L1	0.77		0.74	0	0.39	0.24	()	0.21	0.19
Values at test	L2	1.21		0.87	0	0.39	0.31	()	0.21	0.20
impedance	L3	0.78		0.78	0	0.29	0.26	()	0.19	0.19
Normalised	L1 0.			0.74	0	0.39	0.24	()	0.21	0.19
to standard	L2	1.21		0.87	0	0.39	0.31	()	0.21	0.20
peachee	L3	0.78		0.78	0	0.29	0.26	()	0.19	0.19
Normalised	L1	N/A		N/A	N/A	N/A	N/A	N	/A	N/A	N/A
to required	L2	N/A		N/A	N/A	N/A	N/A	N	/A	N/A	N/A
impedance	L3	N/A		N/A	N/A	N/A	N/A	N	/A	N/A	N/A
Limits set under BS EN 61000-3- 11		4%		3.3%	3.3%	4%	3.3%	3.3	3%	1.0	0.65
Test Impeda	nce	R	0.	24	Ω	XI		0.15			Ω
Standard Impedance		R	0. 0.	24 * 4 ^	Ω	XI	0.15 * 0.25 ^		*		Ω
Maximum Impedance		R	N	/A #	Ω	ХІ		N/A #	N/A #		Ω

 * Applies to three phase and split single phase Power Generating Modules.

^ Applies to single phase **Power Generating Module** and **Power Generating Modules** using two phases on a three phase system

Test start dat	e	2	2024	4-01-12		Test end	date		202	4-02-04	
Test location		N	lo.9	9, Hongye	Road, Suz	hou Indust	rial Park,	Suzhou	, Jiar	igsu, P.R.	China
Model: STT-2	29.9KT	Ľ									
				Starting			Stoppir	ig		Ru	Inning
d(n			K)	d(c) [%]	d(t) [%]	d(max) [%]	d(c) [%	b] d(t)	[%]	Pst [%]	Plt 2 hours [%]
Measured	L1	0.77		0.15	0	0.78	0.16	()	0.11	0.10
Values at test	L2	0.59		0.55	0	0.46	0.43	0)	0.12	0.11
impedance	L3	0.61		0.57	0	0.43	0.43	()	0.12	0.11
Normalised L1		0.77		0.15	0	0.78	0.16	()	0.11	0.10
to standard	L2	0.59		0.55	0	0.46	0.43	()	0.12	0.11
	L3	0.61		0.57	0	0.43	0.43	()	0.12	0.11
Normalised	L1	N/A		N/A	N/A	N/A	N/A	N/	Ά	N/A	N/A
to required	L2	N/A		N/A	N/A	N/A	N/A	N/	'A	N/A	N/A
impedance	L3	N/A		N/A	N/A	N/A	N/A	N/	Ά	N/A	N/A
Limits set under BS EN 61000-3- 11		4%		3.3%	3.3%	4%	3.3%	3.3	8%	1.0	0.65
Test Impedar	nce	R	0.	24	Ω	XI		0.15			Ω
Standard Impedance		R	0. 0.	24 * 4 ^	Ω	XI		0.15 * 0.25 ^			Ω
Maximum Impedance		R	N	/A #	Ω	XI		N/A #		Ω	
* Applies to t	hree pl	hase an	d sr	olit single p	hase Powe	r Generati	ing Mod	ules.			

^ Applies to single phase **Power Generating Module** and **Power Generating Modules** using two phases on a three phase system

4. Power quality – DC injection:

Ρ

The tests should be carried out on a single **Generating Unit**. Tests are to be carried out at three defined power levels $\pm 5\%$. At 230 V a 50 kW three phase **Inverter** has a current output of 217 A so DC limit is 543 mA. These tests should be undertaken in accordance with Annex A.7.1.4.4.

The % DC injection ("as % of rated AC current" below) is calculated as follows:

% DC injection = Recorded DC value in Amps / Base current

where the base current is the **Registered Capacity** (W) / Vphase. The % DC injection should not be greater than 0.25%.

Model: STT-60KTL-M

I hree-phase

Test nower level	10%			55%				100%	
rest power level	L1	L2	L3	L1	L2	L3	L1	L2	L3
Recorded DC injection value in Amps	0.161	0.124	0.136	0.168	0.140	0.119	0.150	0.170	0.086
as % of rated AC current	0.06%	0.05%	0.05	0.06%	0.05%	0.05%	0.06%	0.06%	0.03%
Limit	0.25%			0.25%			0.25%		
Model: STT-29.9KTL									
Three-phase									
Test nower level	10%			55%			100%		
rest power level	L1	L2	L3	L1	L2	L3	L1	L2	L3
Recorded DC injection value in Amps	0.105	0.110	0.073	0.104	0.114	0.120	0.098	0.102	0.129
as % of rated AC current	0.08%	0.08%	0.06%	0.08%	0.09%	0.09%	0.08%	0.08%	0.10%
Limit		0.25%		0.25%			0.25%		

5. Power Factor:

Р

The tests should be carried out on a single **Power Generating Module**. Tests are to be carried out at three voltage levels and at **Registered Capacity** and the measured **Power Factor** must be greater than 0.95 to pass. Voltage to be maintained within $\pm 1.5\%$ of the stated level during the test. These tests should be undertaken in accordance with Annex A.7.1.4.2

Note that the value of voltage stated in brackets assumes a **LV** connection. This should be adjusted for **HV** as required.

Model: STT-60KTL-M											
Voltage	0.94 pu (216.2 V)	1 pu (230 V)	1.1 pu (253 V)								
Measured value	0.9984	0.9981	0.9975								
Power Factor Limit	> 0.95	> 0.95	> 0.95								
Model: STT-29.9KTL											
Voltage	0.94 pu (216.2 V)	1 pu (230 V)	1.1 pu (253 V)								
Measured value	0.9988	0.9985	0.9979								
Power Factor Limit	> 0.95	> 0.95	> 0.95								

6. Protection – Frequency tests:							Р		
These tests sh time delay sho	These tests should be carried out in accordance with the Annex A.7.1.2.3. For trip tests, frequency and time delay should be stated. For "no trip tests", "no trip" can be stated.								
Model: STT-60	KTL-M								
Function	Setting		Trip test		"No trip tests"				
	Frequency	Time delay	Frequency	Time delay	Frequency /time	Confi trip	rm no		
U/F stage 1	47.5 Hz	20 s	47.49 Hz	20.165 s	47.7 Hz 30 s	No tri	p		
U/F stage 2	47.0 Hz	0.5 s	47.00 Hz	0.581 s	47.2 Hz 19.5 s	No tri	p		
					46.8 Hz 0.45 s	No tri	p		
O/F	52.0Hz	0.5 s	52.00 Hz	0.536 s	51.8 Hz 120 s	No tri	p		
					52.2 Hz 0.45 s	No tri	p		

Note: For frequency trip tests the frequency required to trip is the setting ± 0.1 Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting ± 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

7. Protection – Voltage tests:

Ρ

These tests should be carried out in accordance with Annex A.7.1.2.2. For trip tests, voltage and time delay should be stated. For "no trip tests", "no trip" can be stated.

Note that the value of voltage stated below assumes a **LV** connection This should be adjusted for **HV** taking account of the VT ratio as required.

Model: STT-60KTL-M

L1-N

Function	Setting		Trip test		"No trip tests"	
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip
U/V	0.8 pu (184 V)	2.5 s	182.48 V	2.524 s	188 V 5.0 s	No trip
					180 V 2.45 s	No trip
O/V stage 1	1.14 pu (262.2 V)	1.0 s	261.43 V	1.019 s	258.2 V 5.0 s	No trip
O/V stage 2	1.19 pu (273.7 V)	0.5 s	273.41 V	0.539 s	269.7 V 0.95 s	No trip
					277.7 V 0.45 s	No trip

Note: for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Model: STT-60)KTL-M					
L2-N						
Function	Set	ting	Trip	test	"No trip	o tests"
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip
U/V	0.8 pu (184 V)	2.5 s	182.34 V	2.530 s	188 V 5.0 s	No trip
					180 V 2.45 s	No trip
O/V stage	1.14 pu (262.2 V)	1.0 s	261.42 V	1.024 s	258.2 V 5.0 s	No trip
O/V stage 2	1.19 pu (273.7 V)	0.5 s	273.00 V	0.525 s	269.7 V 0.95 s	No trip
					277.7 V 0.45 s	No trip

Note: for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Model: STT-60KTL-M

L3-N						
Function	Set	ting	Trip test		"No trip	o tests"
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip
U/V	0.8 pu (184 V)	2.5 s	182.65 V	2.559 s	188 V 5.0 s	No trip
					180 V 2.45 s	No trip
O/V stage 1	1.14 pu (262.2 V)	1.0 s	262.50 V	1.035 s	258.2 V 5.0 s	No trip
O/V stage 2	1.19 pu (273.7 V)	0.5 s	274.06 V	0.541 s	269.7 V 0.95 s	No trip
					277.7 V 0.45 s	No trip

Note: for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

8. Protection – Loss of Mains test:						Р	
These tests should be carried out in accordance with BS EN 62116. Annex A.7.1.2.4. For test condition A, EUT output = 100 % Pn, test condition B, EUT output = 50 % to 66 % Pn, and test condition C, EUT output = 25 % to 33 % Pn.							
Model: STT-60KTL-M							
The following subset of tests should be recorded in the following table.							
Test Power and imbalance	33% -5% Q	66% -5% Q	100% -5% P	33% +5% Q	66% +5% Q	100% +5% P	
Trip time. Limit is 0.5 s	199 ms	177 ms	199 ms	169 ms	146 ms	202 ms	

8. Loss of Mains Protection, Vector Shift Stability test:							
This test should be carried out in accordance with Annex A.7.1.2.6. Confirmation is required that the Power Generating Module does not trip under positive / negative vector shift.							
Model: STT-60KTL-M							
	Start Frequency	Change	Confirm no trip				
Positive Vector Shift	49.5 Hz	+50 degrees	No trip				
Negative Vector Shift	50.5 Hz	- 50 degrees	No trip				

8. Loss of Mains Protection, RoCoF Stability test:						
This test should be carried out in accordance with Annex A.7.1.2.6. Confirmation is required that the Power Generating Module does not trip for the duration of the ramp up and ramp down test.						
Model: STT-60KTL-M						
Ramp range	Test frequency ramp:	Test Duration	Confirm no trip			
49.0 Hz to 51.0 Hz	+0.95 Hzs ⁻¹	2.1 s	No trip			
51.0 Hz to 49.0 Hz	-0.95 Hzs ⁻¹	2.1 s	No trip			

Document no.

: 6178948.01AOC

9. Limited Frequency Sensitive Mode – Over frequency test: The test should be carried out using the specific threshold frequency of 50.4 Hz and Droop of 10%. This test should be carried out in accordance with Annex A.7.1.3.

Ρ

Active Power response to rising frequency/time plots are attached if frequency injection tests are undertaken in accordance with Annex A.7.2.4.

Alternatively, simulation results should be noted below:

Model: STT-60KTL-M

Test sequence at Registered Capacity >80%	Measured Active Power Output (W)	Frequency (Hz)	Calculate droop (%)	Primary Power Source	Active Power Gradient
Step a) 50.00 Hz ±0.01 Hz	59671.26	50.00	-		
Step b) 50.45 Hz ±0.05 Hz	59038.91	50.45	9.49		
Step c) 50.70 Hz ±0.10 Hz	55736.70	50.70	9.15	Photovoltaic	
Step d) 51.15 Hz ±0.05 Hz	49816.10	51.15	9.13	array	10%
Step e) 50.70 Hz ±0.10 Hz	55717.91	50.70	9.11	simulator	
Step f) 50.45 Hz ±0.05 Hz	59000.79	50.45	8.95		
Step g) 50.00 Hz ±0.01 Hz	59647.35	50.00	-		
Test sequence at Registered Capacity 40% - 60%	Measured Active Power Output (W)	Frequency (Hz)	Calculate droop (%)	Primary Power Source	Active Power Gradient
Step a) 50.00 Hz ±0.01 Hz	30185.00	50.00			
Step b) 50.45 Hz ±0.05 Hz	29872.46	50.45	9.60_ <mark>19.68</mark>		
Step c) 50.70 Hz ±0.10 Hz	26402.54	50.70	9.52	Photovoltaic	
Step d) 51.15 Hz ±0.05 Hz	20593.70	51.15	9.38	array	10%
Step e) 50.70 Hz ±0.10 Hz	26310.03	50.70	9.29	simulator	
Step f) 50.45 Hz ±0.05 Hz	29559.97	50.45	9.60		
Step g) 50.00 Hz ±0.01 Hz	30110.13	50.00			

The frequency at each step should be maintained for at least one minute and the Active Power reduction in the form of a gradient determined and assessed for compliance with paragraph 11.2.3. The Droop should be determined from the measurements between 50.4 Hz and 51.15 Hz. The allowed tolerance for the frequency measurement shall be ± 0.05 Hz. The allowed tolerance for Active Power output measurement shall be $\pm 10\%$ of the required change in Active Power.

The resulting overall tolerance range for a nominal 10% Droop is +2.8% and -1.5%, ie a Droop less than 12.8% and greater than 8.5%.

Ρ

Document no. : 6178948.01AOC

9-2. Power output with falling frequency test (For PV Inverter):						
Tests should prove that falls. These tests should	the Power Generatin be carried out in acco	g Module does not re ordance with 11.2.3.1,	educe output power 12.2.3.1, 13.2.3.1.	as the freq	uency	
Model: STT-60KTL-M						
Test sequence	Measured Active Power Output (W)	Acceptable Active Power	Frequency (Hz)	Primary p source	ower	
49.5 Hz for 5 minutes	60049.54	100% Registered Capacity	49.5	Photovolt array sim	aic ulator	
49.0 Hz for 5 minutes	60076.35	99% Registered Capacity	49.0	Photovolt array sim	aic ulator	
48.0 Hz for 5 minutes	60086.14	97% Registered Capacity	48.0	Photovolt array sim	aic ulator	
47.6 Hz for 5 minutes	60095.54	96.2% Registered Capacity	47.6	Photovolt array sim	aic ulator	
47.1 Hz for 20 s	60120.90	95% Registered Capacity	47.1	Photovolt array sim	aic ulator	

|--|

Model: STT-60KTL-M

Test should prove that the reconnection sequence starts after a minimum delay of 20 s for restoration of voltage and frequency to within the stage 1 settings of Table 10.1.

Time delay setting	Measured delay	Checks on no rec just outside stage	Checks on no reconnection when voltage or frequency is brought to just outside stage 1 limits of Table 10.1.					
60 s	87 s	At 1.16 pu (266.2 V)	At 1.16 pu (266.2 V) At 0.78 pu (180.0 V) At 47.4 Hz		At 52.1 Hz			
Confirmation that generator does	at the Micro- not re-connect.	No reconnection	No reconnection	No reconnection	No reconnection			
Recover to normal operation range after confirmation of no connection		Yes	Yes	Yes	Yes			
Confirmation that the Power Generating Module shall reconnect		nnection Infirmation that the Power Infirmation th		Reconnection after 90.47 s	Reconnection after 88.12 s			

11. Fault level contribution : These tests shall be carried out in accordance with EREC G99 Annex A.7.1.5.				
For Inverter output				
Time after fault	Volts	Amps		
20ms	4.210 / 7.241 / 8.958	0.961		
100ms	4.218 / 7.213 / 8.927	0.900		
250ms	4.144 / 7.271 / 8.886	0.901		
500ms	3.992 / 7.286 / 8.874	0.910		
Time to trip	0.014 s	In seconds		

Annex

Document no. : 6178948.01AOC

12. Self-Monitoring solid state switching: No specified test requirements. Refer to Annex A.7.1.6.	
It has been verified that in the event of the solid state switching device failing to disconnect the Power Park Module , the voltage on the output side of the switching device is reduced to a value below 50 volts within 0.5 s.	N/A
13. Wiring functional tests: If required by para 15.2.1.	
Confirm that the relevant test schedule is attached (tests to be undertaken at time of commissioning)	N/A
14. Logic interface (input port).	
Confirm that an input port is provided and can be used to shut down the module.	Yes
Provide high level description of logic interface, e.g. details in 11.1.3.1 such as AC or DC signal (the additional comments box below can be used)	Yes
15. Cyber security	
Confirm that the Power Generating Module has been designed to comply with cyber security requirements, as detailed in 9.1.7.	Yes Manufacturer's declaration provided
Additional comments.	
Logic Interface: All communication ports are integrated in COM2 and COM3 ports at the bottom of inverter which including Meter port, RS485 port. Sunways grid connected PV inverter comes standard with a data-logger to connect with RS485 port, realize one key to shut off function, and you can use this function by connecting an external switch into the DRED interface on data-logger which connects to RS485 port at bottom of inverter, if it requires in the installation place. The external switch doesn't include in our accessory box. Connect DRED port 1 and port 2 with the external switch connection. When the switch is closed, the inverter will operate normally. When the switch is opened, the inverter will cease to export active power within 5 seconds.	

---End---